archive: SETI FW: [ASTRO] New Research Places Mars Bulk Composition In Question

SETI FW: [ASTRO] New Research Places Mars Bulk Composition In Question

Larry Klaes ( lklaes@zoomtel.com )
Fri, 18 Sep 1998 15:21:05 -0400

----------
From: Ron Baalke
Sent: Friday, September 18, 1998 12:32 PM
To: astro@lists.mindspring.com
Subject: [ASTRO] New Research Places Mars Bulk Composition In Question

Carnegie Institution
Washington, D.C.

Contact:
Pat Craig, pcraig@pst.ciw.edu, (202) 939-1120
Or
Connie Bertka, (202) 686-2410, ext.4443

September 17, 1998

New Research Places Mars Bulk Composition In Question

Rethinking The C1 Carbonaceous Chondrite Standard

New analysis of data from the Mars Pathfinder Mission has revived a nagging
question that was first posed nearly 50 years ago: why do the inner planets
exhibit different mean densities when presumably they formed from the same
material? The new analysis, performed at the Carnegie Institution of
Washington, suggests that one current theory explaining density variations
is wrong, and that future modelers of inner solar system accretion must
account for a set of inner planets with differing elemental compositions.

Connie Bertka and Yingwei Fei of Carnegie's Geophysical Laboratory and Center
for High Pressure Research report in this week's Science magazine that the
bulk elemental composition of Mars does not match the composition of a type
of primitive meteorite called a C1 carbonaceous chondrite. The abundance
ratios of non-volatile elements in C1 chondrites, especially the iron/silica
(Fe/Si) ratio, has long been believed to be a standard for the terrestrial
planets. C1 chondrites evidence refractory element abundance ratios similar
not only to those of the sun's atmosphere, but to lunar and terrestrial
samples as well. Because of this, scientists for over forty years have
assumed that C1 chondrites represent the original parent material from which
the inner solar system accreted, and that the terrestrial planets (with
the exception of Mercury) evidence the same basic non-volatile element
composition. The differences in mean densities were thought to arise from
differences in the amount of reduction that the originally oxidized C1
material experienced. (Some elements in their reduced form favor the
formation of denser mineral phases than in their oxidized form. For example,
metallic iron, Fe, is much denser than an Fe+2- or Fe+3-bearing silicate
mineral phase.)

Previous studies had suggested that the C1 model might not work for Mars, but
those studies were based on questionable assumptions. Bertka and Fei entered
the fray last year, after the Mars Pathfinder mission brought home a
definitive value for Mars's moment of inertia, designated C. C describes the
mass distribution within a planet's interior; essentially it tells how the
elements may be partitioned into a silicate mantle and a denser metallic core.
C is one of the factors necessary to determine a planet's bulk composition.
Before the Mars data were derived from Pathfinder results, C was known only
for the Earth and Moon. That value for Earth, combined with knowledge of the
Earth's mean density and an understanding of high-pressure mineral phase
transitions in its interior, can indeed lead to a calculated non-volatile
element bulk composition equivalent to that of a C1 chondrite.

Bertka and Fei did their best to come up with similar results for Mars.
However, they could not make Mars fit a C1 composition and still conform to
known geophysical and geochemical constraints (including the new value for
C and a bulk composition derived from a set of martian meteorites). The
problem arises in the martian core. In order to conform to C1 and other
constraints, the core cannot be made only of iron, sulfur, and nickel, as
many previous models had assumed. That combination is much too dense.
Therefore, Bertka and Fei mixed in the lighter elements carbon and hydrogen.
They calculated core densities resulting from a variety of element
combinations as functions of pressure and temperature all with the final
elemental end product of C1. However, the core remained too dense. The C1
model had failed. The elemental composition of Mars was clearly different
from that of C1 -- and of Earth.

If the C1 model doesn't work with Mars, says Bertka, then it can't be assumed
as a standard for the other terrestrial planets, and the variations in mean
density of the inner planets must be explained some other way not by the
oxidation and reduction of a common bulk elemental composition. "In our heart
of hearts, we suspected that the C1 model was an oversimplification," Bertka
says. "But it was the best we had."

The Bertka-Fei results suggest that a variation in bulk Fe/Si ratios among
the terrestrial planets is possible. At first appearances, this would mean
that Mercury, Venus, Earth, and Mars all accreted from different materials
that they had their own local "feeding zones." However, Carnegie's George
Wetherill, who has developed a widely accepted accretion model based on the
assumption that the planets accreted from material contributed from a common
area, has suggested a scenario that would explain the discrepancy, at least
for Venus, Earth, and Mars. (The high density of Mercury is owed to something
else.) He sees a correlation between the final distance of a planet from the
sun and the location of the average area, or "provenance," from which the
material that accreted to form the planet originated. Thus, if the original
planetesimal swarm orbiting the sun was not entirely homogeneous, that is,
if it evidenced fluctuations in its elemental composition, then it might be
possible that the resulting planets would reflect those fluctuations and
evidence the differences in bulk composition and density we see today.

The work was partially supported by a grant from NASA.

The Geophysical Laboratory is one of five science research departments of
the Carnegie Institution of Washington, a nonprofit organization devoted to
advanced research and education in the physical and biological sciences.
It's new director, Wesley T. Huntress, Jr., assumes his responsibilities at
the end of the month. The Carnegie Institution is led by its president, the
biologist Maxine F. Singer.